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Abstract

The area of transcriptomics analysis is among the more established in computational biology, having evolved in both technology and
experimental design. Transcriptomics has a strong impetus to develop sophisticated computational methods due to the large amounts
of available whole-genome datasets for many species and because of powerful applications in regulatory network reconstruction as
well as elucidation and modeling of cellular transcriptional responses. While gene expression microarray data can be noisy and
comparisons across experiments challenging, there are a number of sophisticated methods that aid in arriving at statistically and
biologically significant conclusions. As such, computational transcriptomics analysis can provide guidance for analysis of results from
newer experimental technologies. More recently, search methods have been developed to identify modules of genes, which exhibit
coherent expression patterns in only a subset of experimental conditions. The latest advances in these methods allow to integrate
multiple data types and datasets, both experimental and computational, within a single statistical framework accounting for data
confidence and relevance to specific biological questions. Such frameworks provide a unified environment for the exploration of
specific biological hypothesis and for the discovery of coherent data patterns along with the evidence supporting them.

ESPP2 is part of the Virtual Institute for Microbial Stress and Survival supported by the U. S. Department of Energy, Office of
Science, Office of Biological and Environmental Research, Genomics Program:GTL through contract DE-AC02-05CH11231 between
Lawrence Berkeley National Laboratory and the U. S. Department of Energy.



Large scale biology: towards
model cells and organisms

Focused on rapidly inferring as much as possible
about a cell or organism:

* its physiology,

* the networks that control its behavior,

« and how the resultant phenotypes allow them to
survive in diverse and uncertain environments.

Inference based on collaborative, high throughput
experiments and comparative analysis.

Yeast community

Environment Stress Pathway Project (ESPP)

Virtual Institute for Microbial Stress and Survival (VIMSS)
Protein Complex Analysis Project (PCAP)



Data from large scale biology

projects
« Gene

— Function

— Cis-regulatory site

— Phenotype/fithess (upon gene knockout)
— Phylogenetic distribution

* Molecular species

— Relative or absolute level
* Transcriptomics
* Proteomics
* Metabolomics

— Interaction with other molecular species
* Protein-protein interactions
» Transcription factor-DNA binding



Bringing 1t all together physically

and contextually

 Each individual experiment has merit and
can be interpreted in isolation.

 However, to achieve the large scale goals

It IS necessary to integrat
gain multiple contexts.

www.microbesonline.org
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The move of MicrobesCnline, scheduled for July 28, 2008, has been completed. The MicrobesOnling server will be moving again te a more

permanent location some time in August 2008. When a specific date is finalized it will be posted here. If you have any questions please
contact us.
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= 2475 genome sequences available: 707 prokaryotes, 667 bacteria, 40 archaea
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Gene function inference

In absence of direct experimental data or
characterized close orthologs ...

« Sequence similarity
« Domain architecture
* Functional residues

 Genome location
context and presence
of expected
associates

» 3D structure modeling

Legend

InterPro: IPRO00577:mm IPR0O05999:mm

Best COG:

No IPR/Other COGs:mm PDBS:mm [ow-complexity (repetitive) sequence] ~ seg

Description Domain ID
Glycerol kinase COG0554
TRANSFERASE

Actin-like ATPase domain SSF53067 ee————————————————

Glycerol kinase
Carbohydrate kinase, FGGY PF00370
Carbohydrate kinase, FGGY PTHR10196
Actin-like ATPase domain ~ SSF53067
Carbohydrate kinase, FGGY PF02782

Desulfovibrio vulgaris Hildenborough

E. coli glycerol kinase

PDB:1b0o50

TIGR01311 s

ortholog
Sugar (pentulose and hexulose) kinases COG1070
Actin-like ATPase domain SSF53067
Glycerol kinase TIGR01311
Glycerol kinase COG0554
TRANSFERASE PDB:1bwfY
Carbohydrate kinase, FGGY PF00370
Carbohydrate kinase, FGGY
[low-complexity (repetitive) sequence] Seg i
Carbohydrate kinase, FGGY PS00933
Actin-like ATPase domain SSF53067
Carbohydrate kinase, FGGY PF02782
Carbohydrate kinase, FGGY PS00445




MicrobesOnline comparative
tools

Tree and genome browser for

3,699,361 proteins in -
457,623 families from
1076 microbal genomes
(includes multiple family assignments)
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musso e MicrobesOnline and
RegTransBase [ udh

* RegTransBase provides information on
microbial transcription factor binding sites and
sequence motifs based on expert curation and

literature. Articles Curated: 4,445
Experiments: 10,216
Organisms: 180

Genes: 17,346
Sites: 8,833
Regulators: 971
Effectors: 794

 The two databases and websites are interlinked
with ongoing development efforts for new
functionalities.



MicrobesOnline data analysis

Currently focused on gene expression data but

generalizable to many data types. el
. ulgipx
« Gene-gene and experiment- R ==
. _ * 0| g1pF BE
experiment correlations oty -

 Gene expression profile searches: =~

(functional profiling)

bagzy

* Line and box plots allowing to
: *
subset on genes and experiments
[P [ e
* .
Upcoming release of

www.microbesonline.org




Analysis:

O
=
=
| glp=x . fructose 1.6-hizphosphataze II Mo Data
*| 2lpk | gluceral kinase Pearson correlation coefficient
0 glpF B glycerol facilitator 1. o
O oyiil . Uncharacterized protein conserved in bacteria = ggg
0,70
- - - - - - I::l.EI::I
Summarizes similarity in gene expression for a set of genes 0.50
across a set of experiments. o
0,20
_ . o .10
Genes flanking an operon provide a context for significance as well oo

as operon assignments. ég
30

Average correlations of randomly sampled genes or permuted gg
gene expression data for the genes of interest can provide 50
statistical significance. ;g
.90

www.microbesonline.org SO0



Gene expression profile searches

Searches rely on the Pearson correlation coefficient as the similarity measure.
Can identify genes with similar as well as opposite expression patterns.
Computed over many conditions gene co-expression provides expectations

for future experiments and has ap
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ldentifying candidate genes with
gene expression profile searches

This example query profile was based on the mean expression of two E. coli genes
from a single operon. A biologically motivated cutoff appeared based on a

group of clearly functionally related genes from the glycerophospholipid
metabolism pathway.

| qiill:

— |
1354 22 425

Correlation Number of Data Gene Gene Description
Coefficient Points 1d

0.98 317 glpF* | glycerol facilitator

0.97 311 glpK* | glycerol kinase

0.88 317 glpQ periplasmic glycerophosphodiester phosphodiesterase

0.87 316 glpT sn-glycerol-3-phosphate transporter

0.77 313 glpD sn-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding

0.69 317 glpA ;Kgxig(s;[gﬁsdﬁzm dehydrogenase (anaerobic), large subunit,

0.65 316 glpC sn-glycerol-3-phosphate dehydrogenase (anaerobic), small subunit

0.60 317 glpB anaerobic glycerol-3-phosphate dehydrogenase subunit B

045 316 mglA zlésncidporillzﬁzl-galactosidc transporter subunits of ABC superfamily: ATP-binding

www.microbesonline.org



Analysis of candidates:
gene-gene expression correlations

Can expand analysis to genome-wide with clustering, but standard
clustering is limited and eventually need more sophisticated and
computationally intensive bicluster search methods.

For example, need the ability to seed a search with specific

genes and experiments.

— o~ o= = o~~~

periplasmic glucerophosphodiester phosphodiezterase Mo Data

1 1 Facilitat
glycernl facllitator Pearzon correlation coefficient

Slpk ....... glycerol kinasze —
¢ glpT RN sn-glycerol-3-phosphate transporter . o B olao
glpD RN sr~glucerol-3-phosphate dehydrogenase, aerchic, FROAMADCPY-hinding 0,50
glpr B0 R BN sn-glycerol-3-phosphate dehydrogenase (anaerobic), large subunit, FRD/NADCRI-binding N
glpt B sneglucerol-3-phosphate dehydrogenase (anaerobic), small subunit .60

. . Q.30
glpE S anaerobic glucerol-3-phosphate dehydrogenase subunit B 0.40

0,30
.20
0.10
G100
-0.40
-0.,20
-0.30
-0, 40
]
L —0LED
070
B -o.an
B -o.on
B -1.00

www.microbesonline.org




Analysis of candidates:

line and box plots

pH 2,5, 7, 8.7

Entire compendium

{jonmoouauneaizbo|

3
g

3
www.microbesonline.org
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Analysis of candidates:
iterative profile searches

=== = Six additional genes (from 3 different operons)
were identified with high expression profile
.. — similarity to the query. A natural cutoff was

—=— provided by the next best weakly

alpk |

272 11 4 193 .
correlated gene. All top hits are members of the
ufal 31Fe alp | 31FA . . .
“ : glycerophospholipid metabolism pathway.
Correlation Number of Data Gene Gene Description
Coefficient Points Id
0.93 316 glpT* sn-glycerol-3-phosphate transporter
093 i glpK* | glycerol kinase
0951 317 glpF* | glycerol facilitator
091 317 glpQ#* | periplasmic glycerophosphodiester phosphodiesterase
0.86 313 glpD* sn-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding

sn-glycerol-3-phosphate dehydrogenase (anaerobic), large subunit,

0.85 317 glpA* FAD/NAD(P)-binding

0.82 316 glpC* sn-glycerol-3-phosphate dehydrogenase (anaerobic), small subunit
0.79 317 glpB* anaerobic glycerol-3-phosphate dehydrogenase subunit B

044 306 yzgL hypothetical protein

www.microbesonline.org




Biological network inference

 (Goal is to infer (reverse
engineer) the topology of a

network (e.g., regulatory, Nodes = Transcription factors
signaling), based on direct,
indirect or combined Edges = regulatory events
association data. . .
& & © | | _;\ _ﬂ___)‘ J @ e
» |dentify data patterns that ¢~ ¢ $\ oL | 6 (8
indicate causal influence. st X SR .?{ T/ﬂf ( e
@ [ | Ee My e & il
- Networks serve as the o p [ s IR
basis for dynamical -- |
systems modeling and | Q 200 6

ultimately prediction of

cellular responses.
Yeast regulatory network from Maclsaac et al. 2006, based on

computational refinement of chromatin
immunoprecipation on chip (ChlP/chip) TF binding site data.



Basic biclustering

A bicluster of a data set is a subset of rows that exhibit

similar patterns across a subset of columns, or vice
versa.

A family of data clustering methods which use a
similarity measure (Euclidean distance, Pearson correlation
etc.) to compute the input distance matrix for a data
clustering algorithm (e.g., hierarchical, k-means). The
result are clusters of genes and experiments with
similar expression profiles and a 2-D ordering of the

data induced by the dendrograms.
i ﬂTWI i

Disadvantage: uses all THWFWW! I 'ﬁﬁfﬁ&
experiments and all genes Eug ik
in comparisons and only 1 e
bicluster per gene/experiment, EiEi=




The next level: bicluster searching
and its applications

Family of computationally intensive methods, which search
a data matrix for potentially overlapping biclusters.

- Discover (overlapping™) sets of genes and
experiments exhibiting a (non-binary™) data
pattern.

« Test stability of gene+experiment, gene, or

experiment sets with respect to a variety™ of
datasets and statistical criteria.

. Assignment of significance™ to patterns in data,
removal of noise from results and hypothesis.

« High-throughput experimental data analysis and
trOUbIeShOOting' * Increased complexity



Coherent bicluster patterns:
biological mechanism signatures

Uniform differential expression:
Common regulation in the form of transcriptional activation or repression.
E.g., genes in an operon, regulon.

Constant Constant

Log ratio

L
-3 +3



Non-constant coherent bicluster

patterns
Gradient Gradient
Experiments Experiments

Increasing/decreasing
response in time course
or condition gradient.

Potentially co-regulated
transcripts differing in
magnitude of differential
expression.

Log ratio

L
-3 +3



Common functional genomics
data types

Gene- or experiment- by-
features, e.g.:

GO terms
Functional categories
Gene-by-experiment, Phylogenetic profiles
e.g., gene expression Gene-by-gene, e.g., Gene, mRNA, and
protein interaction matrix protein features
Experiments Genes Features
E1 E2 E3 E4 ES5 K o a1 e a5
al | | | || GIN| H “ "
c2 [HNNNN G2 N B E s
c: HEEEE G3 f s
w © HHHEER ® i | | Q.
@ c >
5 & o
O o
s [HHNEN G5 H BN @ =
=
@
L)



Biclustering as statistical data
organization and integration eyl criterion =

weighted sum of sub-criteria
Proportion score

2
MSE(Y) - B(X - ") - (=)
Row Mean Squared Error (MSE),
other correlation and rank criteria
 Significance score calculated from
an empirical null distribution created
from random draws of all allowed
bicluster sizes.
» Probability that a value as extreme or
more extreme would occur if bicluster
was randomly sampled.

>G5

RA =

Cross-validated R?2 209’
» Calculated using data-adaptive

software with polynomial spline fitting.

Gene/Experiment by Feature * Selects subset of features using
cross-validation.

Manuscript in preparation



Bicluster search trajectory

Random 7x7
starting block
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Yeast regulon ‘stability’

Results from novel statistical data fusion algorithm:

10 runs each for 80 S. cerevisiae regulons from Maclsaac et al. 2006

1.2 1

0.6 1

0.8 Hf

0.2 1

i

=& Regulon seed
== Random seed

Number of genes in regulon

Fraction of genes from starting block

-0.2

1 3 5 7 9 1113 15|17 19 21 23 25 27 29 31T

éé&

i

Yeast regulons sorted from largest to smallest

[ 84
[ 80
[ 76
[ 72
68
[ 64
L 60
[ 56
[ 52
[ 48
[ 44
[ 40
[ 36
[ 32
[ 28
[ 24
[ 20
16
12
L 8

Number of genes in regulon



Comparing features and criteria:
bicluster membership

Bicluster A and B overlap:

ﬂ Genes,, Genesg

Fitness2_MSE

GO_proc2_MAD

VGenes, x Genesg

GO_comp2_MSE

Local3 MSE

GO_comp2_MAD

ﬂ Experiments,, Experimentsg

GO_func2_MAD

GO_func2_MSE

ProteinP4_MSE \/ExperimentSA X ExperimentSB

Fitness2_MAD

GO_proc2_MSE

2322332 23 2 10 final biclusters
gt 855288 Single set of runs
“8g g88&as "3 Same starting bicluster

Varying feature set
Varying criteria



Protein-protein interaction
profiles for final biclusters
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Perspectives

* Next questions

— How do different features and datasets contribute to
known regulon recovery?

— What are the properties of known regulons?

e Next additions to algorithm

— Methods

e Forward selection
» Post-analysis toolbox

— Datasets
e Sequence motifs
e Pathways and metabolites

« What are the hallmarks of success?

— Evaluate recovery of known regulons in presence of
noise

— Discovery of novel regulons
— Dynamical modeling based on predicted regulons
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